quinta-feira, 19 de agosto de 2010

O Surgimento da Geometria Analítica

A Geometria, como ciência dedutiva, foi criada pelos gregos. Mas, apesar do seu brilhantismo faltava operacionalidade à geometria grega. E isto só iria ser conseguido mediante a Álgebra como princípio unificador. Os gregos, porém, não eram muito bons em álgebra. Mais do que isso, somente no século XVII a álgebra estaria razoavelmente aparelhada para uma fusão criativa com a geometria.
Ocorre porém que o fato de haver condições para uma descoberta não exclui o toque de genialidade de alguém. E no caso da geometria analítica, fruto dessa fusão, o mérito não foi de uma só pessoa. Dois franceses, Pierre de Fermat (1601-1665) e René Descartes (1596-1650), curiosamente ambos graduados em Direito, nenhum deles matemático profissional, são os responsáveis por esse grande avanço científico: o primeiro movido basicamente por seu grande amor, a matemática e o segundo por razões filosóficas. E, diga-se de passagem, não trabalharam juntos: a geometria analítica é um dos muitos casos, em ciência, de descobertas simultâneas e independentes.
Se o bem-sucedido Pierre de Fermat zeloso e competente conselheiro junto ao Parlamento de Toulouse, dedicava muitas de suas melhores horas de lazer à matemática, certamente não era porque faltasse, alguém em sua posição, outras maneiras de preencher o tempo disponível. Na verdade Fermat simplesmente não conseguia fugia à sua verdadeira vocação e, apesar de praticar matemática como hobby, nenhum de seus contemporâneos contribuiu tanto para o avanço desta ciência quanto ele. Além da geometria analítica, Fermat teve papel fundamental na criação do Cálculo Diferencial, do Cálculo de Probabilidades e, especialmente, da teoria dos números, ramo da matemática que estuda as propriedades dos números inteiros.
A contribuição de Fermat à geometria analítica encontra-se num pequeno texto intitulado Introdução aos Lugares Planos e Sólidos e data no máximo, de 1636 mais que só foi publicado em 1679, postumamente, junto com sua obra completa. É que fermat, bastante modesto, era avesso a publicar seus trabalhos. Disso resulta, em parte, o fato de Descartes comumente ser mais lembrado como criador da Geometria Analítica.
O interesse de Descartes pela matemática surgiu cedo, no “College de la Fleche”, escola do mais alto padrão, dirigida por jesuítas, na qual ingressará aos oito anos de idade. Mas por uma razão muito especial e que já revelava seus pendores filosóficos: a certeza que as demonstrações ou justificativas matemáticas proporcionam. Aos vinte e um anos de idade, depois de freqüentar rodas matemáticas em Paris (além de outras) já graduado em Direito, ingressa voluntariamente na carreira das armas, uma das poucas opções “dignas” que se ofereciam a um jovem como ele, oriundo da nobreza menor da França. Durante os quase nove anos que serviu em vários exércitos, não se sabe de nenhuma proeza militar realizada por Descartes. É que as batalhas que ocupavam seus pensamentos e seus sonhos travavam-se no campo da ciência e da filosofia.
A Geometria Analítica de Descartes apareceu em 1637 no pequeno texto chamado A Geometria como um dos três apêndices do Discurso do método, obra considerada o marco inicial da filosofia moderna. Nela, em resumo, Descartes defende o método matemático como modelo para a aquisição de conhecimentos em todos os campos.
A Geometria Analítica, como é hoje, pouco se assemelha às contribuições deixadas por Fermat e Descartes. Inclusive sua marca mais característica, um par de eixos ortogonais, não usada por nenhum deles. Mais, cada um a seu modo, sabiam que a idéia central era associar equações a curvas e superfícies. Neste particular, Fermat foi mais feliz. Descartes superou Fermat na notação algébrica.


HYGINO H. DOMINGUES


Geometria Analítica

1 - Introdução

A Geometria Analítica é uma parte da Matemática , que através de processos particulares , estabelece as relações existentes entre a Álgebra e a Geometria. Desse modo , uma reta , uma circunferência ou uma figura podem ter suas propriedades estudadas através de métodos algébricos .
Os estudos iniciais da Geometria Analítica se deram no século XVII , e devem-se ao filósofo e matemático francês René Descartes (1596 - 1650), inventor das coordenadas cartesianas (assim chamadas em sua homenagem), que permitiram a representação numérica de propriedades geométricas. No seu livro Discurso sobre o Método, escrito em 1637, aparece a célebre frase em latim "Cogito ergo sum" , ou seja: "Penso, logo existo".

1.1 - Coordenadas cartesianas na reta

Seja a reta r na Fig. abaixo e sobre ela tomemos um ponto O chamado origem.
Adotemos uma unidade de medida e suponhamos que os comprimentos medidos a partir de O, sejam positivos à direita e negativos à esquerda.





O comprimento do segmento OA é igual a 1 u.c (u.c = unidade de comprimento). É fácil concluir que existe uma correspondência um a um (correspondência biunívoca) entre o conjunto dos pontos da reta e o conjunto R dos números reais. Os números são chamados abscissas dos pontos. Assim, a abscissa do ponto A’ é -1, a abscissa da origem O é 0, a abscissa do ponto A
é 1, etc.
A reta r é chamada eixo das abscissas.

1.2 - Coordenadas cartesianas no plano

Com o modo simples de se representar números numa reta, visto acima, podemos estender a idéia para o plano, basta que para isto consideremos duas retas perpendiculares que se interceptem num ponto O, que será a origem do sistema. Veja a Fig. a seguir:



Dizemos que a é a abscissa do ponto P e b é a ordenada do ponto P.
O eixo OX é denominado eixo das abscissas e o eixo OY é denominado eixo das ordenadas.
O ponto O(0,0) é a origem do sistema de coordenadas cartesianas.
Os sinais algébricos de a e b definem regiões do plano denominadas QUADRANTES.
No 1º quadrante, a e b são positivos, no 2º quadrante, a é negativo e b positivo, no 3º quadrante, ambos são negativos e finalmente no 4º quadrante a é positivo e b negativo.

Observe que todos os pontos do eixo OX tem ordenada nula e todos os pontos do eixo OY tem abscissa nula. Assim, dizemos que a equação do eixo OX é y = 0 e a equação do eixo OY é
x = 0.
Os pontos do plano onde a = b, definem uma reta denominada bissetriz do 1º quadrante, cuja equação evidentemente é y = x.
Já os pontos do plano onde a = -b (ou b = - a), ou seja, de coordenadas simétricas, definem uma reta denominada bissetriz do 2º quadrante, cuja equação evidentemente é y = - x.
Os eixos OX e OY são denominados eixos coordenados.


Exercícios Resolvidos

1) Se o ponto P(2m-8 , m) pertence ao eixo dos y , então :
a) m é um número primo
b) m é primo e par
c) m é um quadrado perfeito
d) m = 0
e) m < 4

Solução:
Se um ponto pertence ao eixo vertical (eixo y) , então a sua abscissa é nula.
Logo, no caso teremos 2m - 8 = 0, de onde tiramos m = 4 e portanto a alternativa correta é a letra C, pois 4 é um quadrado perfeito (4 = 22).

2) Se o ponto P(r - 12 , 4r - 6) pertença à primeira bissetriz , então podemos afirmar que :

a) r é um número natural
b) r = - 3
c) r é raiz da equação x3 - x2 + x + 14 = 0 
d) r é um número inteiro menor do que - 3 .
e) não existe r nestas condições .

Solução:
Os pontos da primeira bissetriz (reta y = x), possuem abscissa e ordenada iguais entre si. Logo, deveremos ter: r - 12 = 4r - 6 de onde conclui-se r = - 2.
Das alternativas apresentadas, concluímos que a correta é a letra C, uma vez que -2 é raiz da equação dada. Basta substituir x por -2 ou seja:
(-2)3 - (-2)2 + (-2) + 14 = 0  o que confirma que -2 é raiz da equação.

3) Se o ponto P(k , -2) satisfaz à relação x + 2y - 10 = 0 , então o valor de k 2 é:

a) 200
b) 196
c) 144
d) 36
e) 0

Solução:
Fazendo x = k e y = -2 na relação dada, vem: k + 2(-2) - 10 = 0.
Logo, k = 14 e portanto k2 = 142 = 196.
Logo, a alternativa correta é a letra B.
2 - Fórmula da distância entre dois pontos do plano cartesiano

Dados dois pontos do plano A(Xa,Ya) e B(Xb,Yb) , deduz-se facilmente usando o teorema de Pitágoras a seguinte fórmula da distancia entre os pontos A e B:


Esta fórmula também pode ser escrita como: d2AB = (Xb - Xa)2 + (Yb - Ya)2 , obtida da anterior, elevando-se ao quadrado (quadrando-se) ambos os membros.



Exercício Resolvido
O ponto A pertence ao semi-eixo positivo das ordenadas ; dados os pontos B(2 , 3) e C(-4 ,1) , sabe-se que do ponto A se vê o segmento BC sob um ângulo reto . Nestas condições podemos afirmar que o ponto A é :

a) (3,0)
b) (0, -1)
c) (0,4)
d) (0,5)
e) (0, 3)

Solução:
Como do ponto A se vê BC sob um ângulo reto, podemos concluir que o triângulo ABC é retângulo em A. Logo, vale o teorema de Pitágoras: o quadrado da hipotenusa é igual à soma dos quadrados dos catetos. Portanto, podemos escrever: AB2 + AC2 = BC2 (BC é a hipotenusa porque é o lado que se opõe ao ângulo reto A). Da fórmula de distância, podemos então escrever, considerando que as coordenadas do ponto A são (0,y) , já que é dado no problema que o ponto A está no eixo dos y e portanto sua abscissa é nula:

AB2 = ( 0 - 2 )2 + ( y - 3 )2 = 4 + ( y - 3 )2
AC2 = ( 0 - (-4))2 + ( y - 1)2 = 16 + ( y - 1 )2
BC2 = ( 2 - (-4))2 + ( 3 - 1 )2 = 40
Substituindo, vem: 4 + ( y - 3 )2 + 16 + ( y - 1 )2 = 40 \ ( y - 3 )2 + ( y - 1)2 = 40 - 4 - 16 = 20

Desenvolvendo, fica: y2 - 6y + 9 + y2 - 2y + 1 = 20 \ 2y2 - 8y - 10 = 0 \ y2 - 4y - 5 = 0 , que resolvida, encontramos y = 5 ou y = -1. A raiz y = -1 não serve, pois foi dito no problema que o ponto A está no semi-eixo positivo . Portanto, o ponto procurado é A(0,5), o que nos leva a concluir que a alternativa correta é a letra D.


3 - Ponto médio de um segmento

Dado o segmento de reta AB , o ponto médio de AB é o ponto M Î AB tal que AM = BM .
Nestas condições, dados os pontos A(x1 , y1) e B(x2 , y2) , as coordenadas do ponto médio M(xm , ym) serão dadas por:

Exercício Resolvido

Sendo W o comprimento da mediana relativa ao lado BC do triângulo ABC onde A(0,0), B(4,6) e C(2,4) , então W2 é igual a:

a) 25
b) 32
c) 34
d) 44
e) 16

Solução:
Chama-se mediana de um triângulo relativa a um lado, ao segmento de reta que une um vértice ao ponto médio do lado oposto. Assim, a mediana relativa ao lado BC será o segmento que une o ponto A ao ponto médio de BC. Das fórmulas de ponto médio anteriores, concluímos que o ponto médio de BC será o ponto M( 3, 5). Portanto, o comprimento da mediana procurado será a distância entre os pontos A e M. Usando a fórmula de distância encontramos AM = Ö 34 ou seja raiz quadrada de 34. Logo, W = Ö 34 e portanto W2 = 34, o que nos leva a concluir que a resposta correta está na alternativa C.

4 - Baricentro de um triângulo

Sabemos da Geometria plana , que o baricentro de um triângulo ABC é o ponto de encontro das 3 medianas . Sendo G o baricentro , temos que AG = 2 . GM onde M é o ponto médio do lado oposto ao vértice A (AM é uma das 3 medianas do triângulo).
Nestas condições , as coordenadas do baricentro G(xg , yg) do triângulo ABC onde A(xa , ya) , B(xb , yb) e C(xc , yc) é dado por :



Conclui-se pois que as coordenadas do baricentro do triângulo ABC, são iguais às médias aritméticas das coordenadas dos pontos A , B e C.
Assim, por exemplo, o baricentro (também conhecido como centro de gravidade) do triângulo ABC onde A(3,5) , B(4, -1) e C(11, 8) será o ponto G(6, 4). Verifique com o uso direto das fórmulas.
Exercício resolvido
Conhecendo-se o baricentro B(3,5), do triângulo XYZ onde X(2,5) , Y(-4,6) , qual o comprimento do segmento BZ?
Solução:
Seja o ponto Z(a,b). Temos, pela fórmula do baricentro:
3 = (2 - 4 + a) / 3 e 5 = (5 + 6 + b) / 3
Daí, vem que a = 11 e b = 4. O ponto Z será portanto Z(11, 4).
Usando a fórmula da distância entre dois pontos, lembrando que B(3,5) e Z(11,4),
encontraremos BZ = 651/2 u.c. (u.c. = unidades de comprimento).
Agora resolva este:

Os pontos A(m, 7), B(0, n) e C(3, 1) são os vértices de um triângulo cujo baricentro é o ponto G(6, 11). Calcule o valor de m2 + n2.
Resposta: 850

A Geometria Analítica, também denominada de coordenadas geométricas, se baseia nos estudos da Geometria através da utilização da Álgebra. Os estudos iniciais estão ligados ao matemático francês René Descartes (1596 -1650), criador do sistema de coordenadas cartesianas.

Os estudos relacionados à Geometria Analítica datam seu início no século XVII, Descartes, ao relacionar a Álgebra com a Geometria, criou princípios matemáticos capazes de analisar por métodos geométricos as propriedades do ponto, da reta e da circunferência, determinando distâncias entre eles, localização e pontos de coordenadas.

Uma característica importante da G.A. se apresenta na definição de formas geométricas de modo numérico, extraindo dados informativos da representação. Com base nesses estudos, a Matemática passa a ser vista como uma disciplina moderna, capaz de explicar e demonstrar situações relacionadas ao espaço. As noções intuitivas de vetores começam a ser exploradas de forma contundente, na busca por resultados numéricos que expressem as ideias da união da Geometria com a Álgebra.

Os vetores constituem a base dos estudos do espaço vetorial, objetos que possuem as características relacionadas a tamanho, direção e sentido. Os vetores são muito utilizados na Física, como ferramenta auxiliar nos cálculos relacionados à Cinemática Vetorial, Dinâmica, Campo Elétrico entre outros conteúdos relacionados.
Os cientistas Isaac Newton e Gottfried Wilhelm Leibniz concentraram estudos na Geometria Analítica, que serviu como base teórica e prática para o surgimento do Cálculo Diferencial e Integral, muito utilizado atualmente na Engenharia.

Podemos relacionar os seguintes tópicos ao estudo da G.A.:
Estudo Analítico do Ponto
Plano Cartesiano
Distância entre dois pontos
Ponto médio de um segmento
Condição de alinhamento de três pontos

Estudo da Circunferência
Equação geral e reduzida da circunferência
Posições relativas entre ponto e circunferência
Posições relativas entre reta e circunferência
Problemas relacionados à tangência cônica

Estudo da Reta
Equação geral e reduzida da reta
Intersecção entre retas
Paralelismo
Perpendicularidade
Ângulos entre retas
Distância entre ponto e reta

Estudo das Cônicas
Elipse
Hipérbole
Parábola Intersecção entre cônicas
Retas tangentes a uma

Um comentário:

  1. Resposta 4:
    Outra caso de ciência desenvolvida simultânea e independente é o Cálculo Diferencial*, ou simplesmente Cálculo, por Gottfried Wilhelm Von Leibniz e a Isaac Newton. O primeiro é acusado de plagiar os trabalhos não publicados de Newton; no entanto, hoje é considerado o inventor do Cálculo juntamente à Newton. Prova disso é que ambos chegaram de formas distintas, ao Teorema Fundamental do Cálculo.

    *Cálculo Diferencial: é um ramo importante da matemática, desenvolvido a partir da Álgebra e da Geometria, que se dedica ao estudo de taxas de variação de grandezas (como a inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido). Onde há movimento ou crescimento e onde forças variáveis agem produzindo aceleração, o cálculo é a matemática a ser empregada.

    Aluna: Ludimila de Mello Oliveira
    Sala : 3° EM1

    ResponderExcluir